## Accelerated development of materials using high-throughput strategies and AI/ML

## Surya R. Kalidindi<sup>1</sup>

## <sup>1</sup>Georgia Tech, Atlanta, GA, USA

The dramatic acceleration of the materials innovation cycles is contingent on the development and implementation of high throughput strategies in both experimentation and physics-based simulations, and their seamless integration using the emergent AI/ML (artificial intelligence/machine learning) toolsets. This talk presents recent advances made in the presenter's research group, including: (i) a novel information gain-driven Bayesian ML framework that identifies the next best step in materials innovation (i.e., the next experiment and/or physics-based simulation to be performed) that maximizes the expected information gain towards a specified target (e.g., optimized combination of material properties, refinement of a material constitutive response), (ii) computationally efficient versatile microstructure image analyses and statistical quantification tools, (iii) formulation of reduced-order process-structure-property models that enable comprehensive inverse solutions needed in materials design (e.g., identifying specific compositions and/or process histories that will produce a desired combination of material properties), and (iv) high throughput experimental protocols for multi-resolution (spatial resolutions in the range of 50 nm to 500 microns) mechanical characterization of heterogeneous materials in small volumes (e.g., individual phase constituents in multiphase material samples, thin coatings or layers in a multilayered sample). These recent advances will be illustrated with multiple case studies.